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KIPET is the one-stop shop for kinetic parameter estimation from batch and fed-batch reactor systems using spec-
troscopic or concentration data. KIPET is a Python-based package using maximum-likelihood statistics, large-scale
nonlinear programming optimization, and finite element discretization in a unified framework to solve a variety of
parameter estimation problems. Use KIPET to:

 Simulate reactive system described with DAEs

* Solve DAE systems with collocation methods

* Pre-process data

¢ Perform estimability analysis

 Estimate data variances

 Estimate kinetic parameters

 Estimate confidence intervals of the estimated parameters

 Estimate parameters from multiple datasets with different experimental conditions
* Obtain the most informative wavelength set to obtain minimal lack-of-fit

* Analyze your system (SVD, PCA, lack of fit, etc.)

¢ Visualize results
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1.1 Installation Guide

KIPET is written in the Python programming language and requires at least version 3.8 for best performance. Thus, to
use KIPET, Python needs to be installed on your workstation.

Note: Support for Python 2.7 has been dropped in the most recent versions of KIPET!

This documentation does not include a detailed decription of how to install Python. There are enough sources on the
internet where you can find detailed instructions on how to install it, such as this detailed guide from Real Python that
covers all the major operating systems.

1.1.1 Installation

The latest versions of KIPET are conveniently provided as Python packages which are hosted in the usual locations.
You can use any resource you wish to manage the installation, including virtualenv, poetry, conda, etc.

PyPi Package

KIPET can be installed with the standard packaging manager, pip:

pip install kipet

If you prefer to use poetry to manage your packages, you can also use

poetry add kipet

Anaconda Package

If you prefer to use Anaconda, KIPET can be installed using:

conda install -c kwmcbride kipet

Note: The anaconda packages have the benefit of already including pynumero, which is needed (but not required) for
some of the methods included in KIPET. You will need to compile these on your own if you choose to install KIPET
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using a different method. See the pynumero readme for more information. Otherwise, you can also use k_aug for these
methods as well.

GitHub

Additionally, KIPET may be installed directly from the repository (for example, if using poetry, simply install the
desired branch (#branch) in the following manner):

poetry add git+https://github.com/salvadorgarciamunoz/kipet#master

Naturally you can simply clone or download the repository if you wish. If you desire to further develop KIPET for your
own needs, this method is recommended.

cd <installation directory>

git clone https://github.com/salvadorgarciamunoz/kipet.git
cd kipet

python setup.py install

If you would like to contribute to KIPET, this is the recommended installation route.

1.1.2 Installing IPOPT
To use KIPET for parameter fitting, you need to have a solver installed that can solver NLPs. Currently the only
nonlinear solver implemented and tested in KIPET is IPOPT (Wéchter and Biegler, 2006).

This document only provides basic instructions on the easiest method to install the solvers. For a detailed installation
guide please refer to the COIN-OR project website. If you have purchased or obtained access to the HSL solver library
for additional linear solvers, the instructions for this compilation are also found on the COIN-OR website.

The installation methods only show how to install Ipopt. There are several third party linear solvers that Ipopt requires
and these also need to be installed. See the COIN-OR link above for more information.

Linux/MacOS Installation

Download the IPOPT tarball and then issue the following commands in the relevant directory:

gunzip Ipopt-x.y.z.tgz
tar xvf Ipopt-x.y.z.tar

Where the version number is X.y.z. Rename the directory that was just extracted:

mv Ipopt-x.y.z CoinIpopt

Then go into the directory we just created:

cd CoinIpopt

and we create a directory to move the compiled version of IPOPT to, e.g.:

mkdir build

and enter this directory:
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cd build

Then we run the configure script:

../configure

make the code

make

and then we test to verify that the compilation was successfully completed by entering:

make test

Finally we install IPOPT:

make install

Microsoft Windows

The simplest installation for Microsoft windows is to download the pre-compiled binaries for IPOPT from COIN-OR.
After downloading the file and unzipping it you can place this folder into the Pyomo solver location:

C:\Users\USERNAME\Anaconda3\Lib\site-packages\pyomo\solvers\plugins\solvers

Run an example (explained in the next section) to test if it works. This method should also include a functioning version
of sIpopt and so the next step is not necessary unless another method of installation is used. If trouble is experienced
using this approach other methods can be used and they are detailed in the Introduction to IPOPT document.

Another simple way to install IPOPT for use in the Anaconda environment is to use the following within the Anaconda
Prompt:

conda install -c conda-forge ipopt

Note: Note that this version of IPOPT is not necessarily the most up-to-date and will not have access to the more
advanced linear solvers that are available through the HSL library, and so it is rather advised to compile the solver for
your own use.

1.1.3 Installing k_aug

If the user would like to utilize k_aug to perform confidence intervals or to compute sensitivities, k_aug needs to be
installed and added to the system path. A complete installation guide can be found within the same folder as this
documentation on the Github page or on David M. Thierry’s Github page.

Note: If you are using a Linux OS, you can try a script that automatically installs k_aug for you.

1.1. Installation Guide 5
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1.1.4 Examples and Tutorials

All of the example problems can be easily downloaded from the examples repository:

cd <example directory>
git clone https://github.com/kwmcbride/kipet_examples.git

To validate your installation, you can now run the test script included with the examples:

cd <example directory>/kipet_examples
python run_examples.py

1.1.5 Validation of the Package

If you want to validate your installation of KIPET, you can download the example problems found in the examples
repository. You can then run all examples with the following:

python kipet_examples/run_examples.py

Note that if sIpopt or k_aug are not installed, certain test problems will fail to run. If this is the case and you do not
intend to use the sensitivity calculations, you can simply ignore these failures.

1.1.6 Updating KIPET

New versions of KIPET can be updated using the respective package manager you used to install KIPET.

1.1.7 Troubeshooting

Installation via Anaconda Fails

Some users may not be able to install KIPET using Anaconda. The issue being raised is usually in regard to the version
of Python not being correct. This is being worked on, but you can still install KIPET using the Ananconda Navigator
GUI or by simply installing using pip within your conda environment.

Windows PATH Management

If there are issues found with running examples it may be necessary in Windows to add Python to the PATH environment
variable. This can be done through your IDE, Spyder, in the case of this document by following these steps. Navigate
to to Tools>SPYTHONPATH Manager in Spyder and add the folder C:UsersUsernameAnaconda3 to the PATH. If the
user would like to use Python commands from the command prompt, as opposed to the Anaconda prompt, then Python
can be added to the PATH Environmental Variable by going into the Start Menu, right-clicking on My Computer and
clicking on Advanced Settings in Properties. In this window one can find “Environment Variables”. Click Edit and
add Python to the PATH variable by adding the location of where Python is installed on your system. You should now
be ready to use KIPET!

6 Chapter 1. Table of Contents
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Issues

If you encounter any issues, please report them on our Github page.

1.2 Overview

KIPET is an open-source Python package developed through a partnership between Eli Lilly and Company and Carnegie
Mellon University. The package is primarily used for the estimation of kinetic parameters from spectral/concentration
data. It can also be used to preprocess data, simulate reactive systems, estimate data variances, obtain confidence inter-
vals of the kinetic parameters obtained, and do estimability analysis. This is all possible through a unified framework
based on maximum likelihood principles, robust discretization methods, and large-scale nonlinear optimization. In this
documentatation the capabilities of KIPET are described and examples and tutorials are given so that a user with basic
programming knowledge can use the toolkit for their own purposes.

Spectra
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Fig. 1.1: Visualization of a multi-wavelength spectroscopic dataset

Additionally, KIPET can be used to obtain a better understanding of a chemical reaction system through inclusion
of functionalities that allow for the simulation and optimization of reactive systems that are described by differential
algebraic equations (DAEs). The following functionalities are included within the KIPET package:

» Simulation of a reactive system described with DAEs
* Solve DAE systems with collocation methods

* Pre-process data

* Estimability analysis

 Estimate data variances

» Estimate kinetic parameters

Estimate confidence intervals of the estimated parameters

Obtain the most informative wavelength set to obtain minimal lack-of-fit

Tools for system analysis (SVD, PCA, lack of fit, etc.)

1.2. Overview 7
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Fig. 1.2: Example of the decomposition of the spectra in single component absorbance and concentration profiles
(absorbance)
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Fig. 1.3: Example of the decomposition of the spectra in single component absorbance and concentration profiles
(concentration)
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¢ Visualize results

In the sections that follow, this document provides guidelines on how to make use of KIPET. A detailed installation
guide, a getting started section, and many examples are provided.

KIPET is made available under the GNU General Public License, GPL-3. For more details on this license please
review the terms on the Github page. The KIPET team involves Salvador Garcia-Munoz (Eli Lilly), Santiago Rodriguez
(Purdue University), Christina Schenk (Basque Center for Applied Mathematics), Michael Short (University of Surrey),
Lorenz T. Biegler, David M. Thierry, Kevin McBride, and Kuan-Han Lin (all Carnegie Mellon University).

1.2.1 Citing KIPET

C. Schenk, M. Short, J.S. Rodriguez, D. Thierry, L.T. Biegler, S. Garcia-Muifioz, W. Chen (2020) Introducing KIPET:
A novel open-source software package for kinetic parameter estimation from experimental datasets including spectra,
Computers & Chemical Engineering, 134, 106716. https://doi.org/10.1016/j.compchemeng.2019.106716

M. Short, L.T. Biegler, S. Garcia-Mufioz, W. Chen (2020) Estimating variances and kinetic parameters from spectra
across multiple datasets using KIPET, Chemometrics and Intelligent Laboratory Systems, https://doi.org/10.1016/j.
chemolab.2020.104012

M. Short, C. Schenk, D. Thierry, J.S. Rodriguez, L.T. Biegler, S. Garcia-Mufioz (2019) KIPET-An Open-Source
Kinetic Parameter Estimation Toolkit, Computer Aided Chemical Engineering, 47, 299-304.

1.3 Background

This documentation focuses on kinetic studies for the investigation of chemical reactions and identification of associated
rate constants from spectroscopic data. The methodology is the same as published in Chen, et al. (2016), where the
technical details are laid out in significant detail. In this document the user will find a summary of the procedure in the
paper as well as how this method has been transferred to KIPET. This document will therefore attempt to only describe
as much detail as necessary in order to understand and use KIPET.

1.3.1 General modeling strategy and method

After installing and importing the package users can do the following things:
* Build a chemical reaction model
 Simulate the model
 Estimate variances in the data
* Preprocess data
 Perform estimability analysis
» Estimate parameters
» Ascertain whether a different subset of wavelengths is more suitable for the model
» Compute confidence intervals of the estimated parameters
* Plot concentration and absorbance profiles

This can be done for problems where we have multiple datasets from separate experiments or in the case of having
concentration data only and not spectra.

The first step in KIPET is to create a model. A model contains the physical equations that represent the chemical reaction
system dynamics. Once a model is created users can either make a simulation by solving the DAE equations with a

1.3. Background 9
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multi-step integrator or through a discretization in finite elements. Alternatively an optimization can be performed in
which the DAE equations are the constraints of the optimization problem. In general, KIPET provides functionality to
solve optimization problems for parameter estimation of kinetic systems. For the construction of optimization models
KIPET relies on the Python-based open-source software Pyomo. Pyomo can be used to formulate general optimization
problems in Python. After a model is created users can extend the model by adding variables, equations, constraints or
customized objective functions in a similar way to Pyomo. After the simulation or the optimization is solved, users can
visualize the concentration and absorbance profiles of the reactive system. These steps are summarized in the following
figure.
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Fig. 1.4: The steps/modules involved in setting up a KIPET model

The variable nomenclature follows the same labeling structure as used in the original paper, Chen et al. (2016). Once
the model is created it can be simulated or optimized. KIPET simulates and optimizes Pyomo models following a
simultaneous approach. In the simultaneous approach all of the time-dependent variables are discretized to construct a
large nonlinear problem. Due to the nature of large nonlinear problems, good initial guesses for variables are essential.
KIPET provides a number of tools to help users to initialize their problems, including through the use of running
simulations with fixed guessed parameters, using a least squares approach with fixed parameters, or through a finite
element by finite element approach using KIPET’s in-built fe_factory (recommended for large problems and necessary
for problems in which we have dosing). KIPET therefore offers a number of simulator and optimizer classes that
facilitate the initialization and scaling of models before these are called for simulation. In addition, the simulator and
optimizer classes available in KIPET will store the results of the simulation/optimization in pandas DataFrames for
easy visualization and analysis. More information on this and why this is relevant to the user will follow during the
tutorial problems. KIPET offers two classes for the optimization of reactive models. The ParameterEstimator class
estimates kinetic parameters from spectral data by solving the problem formulation described in Chen, et al. (2016).
Within this class the objective function is constructed with Pyomo and added to the model that is passed to the solver. If
the user provides a model with an active objective function however, the ParameterEstimator will optimize the objective
function provided by the user. This class also offers the ability to determine the confidence intervals of the estimated
parameters. For all calculations in the ParameterEstimator class the variances of the spectral data need to be provided.
When the variances are not known the user can use the VarianceEstimator optimizer class instead to determine them.
We provide a number of different approaches to estimate the variances. The first one is the one described in Chen et al.
(2016). The procedure consists of solving three different nonlinear optimization problems in a loop until convergence
on the concentration profiles is achieved. The following figure summarizes the variance estimation procedure based on
maximum likelihood principles:

The VarianceEstimator class will construct the three problems and solve them with a nonlinear solver until the conver-
gence criteria is satisfied. By default KIPET checks for the infinite norm of the residuals of Z between two iterations.
If the infinity norm is less than the tolerance (default Se-5) then variances are estimated by solving the overdetermined
system shown in the next figure.
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Fig. 1.5: The VarianceEstimator class algorithm 1 from Chen et al. (2016)
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The solution of each subproblem in this procedure is logged in the file iterations.log. Examples on how to use the
optimization classes and their corresponding options can be found in the tutorial section of this document. It should
be noted at this point that all that is required to determine the variances in this way are the components, their initial
concentrations, the differential equations describing the reactions, and the spectroscopic data absorption matrix, D,
which consists of the experimental absorption data with rows (i) being the time points and columns (1) being the
measured wavelengths. The above method was described in the initial paper from Chen et al. (2016). This method can
be problematic for certain problems and so a new variance estimation procedure has been developed and implemented
in version 1.1.01 whereby direct maximum likelihood formulations are solved. We propose and include 2 new methods
as well as a number of functions in order to obtain good initial guesses for variance. The first and recommended method
is known as the “alternate” strategy within KIPET. Here we solve for the worst-case device variance first:

min log (Z €;'—€Z~>

where
gij = dij — Z zk(ti)skj
k
Then we set:

v? = Zg;rgi/(nwp “Tip)
We also know that, from derivations in Chen et al. (2016):

Nwp N

v? = Z Z (52 + azskl) [Mwp

=1 k=1

We guess initial values for (which the user provides) and solve the maximum likelihood-derived objective:

-
min ny,p, log < e;—ei> + LAl

— 202

K2 K2

and then we are able to determine delta from:
2 T
0% = Zei €/ (Muwp - Nip)
i

Following this we can evaluate:

f(O'p) — 2 = 52 _ a'; (Z 2 skl/nwp>

=1 k=1

This function then provides us with the difference between our overall variance and the model and device variances.
If the value of the function is below tolerance we stop or we update using a secant method and re-solve until we find
convergence.

A third method is provided, referred to as “direct_sigmas” in KIPET, which first assumes that there is no model variance
and solves directly for a worst-case device variance. The formulation solved is thus:

Nip Nwp Ne 2
!
min §ntp * Nap lOg E E (dil — E Zk(ti)sk()\l)> [ (Mep - Nawp)
i=1 =1 k=1

And from this formulation, the device variance can be solved for directly assuming that there is no model variance.
Once the worst-possible device variance is known, we can obtain some region in which to solve for the model variances
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knowing the range in which the device variance is likely to lie. The following equation can be used to solve for different
values of device variance:

Nip Nwp 2
mlnwzz< Zl—sz )sk(Ar) ) (1.1)

=1 1=1
ntpnc A 2
log (ZZ ck(t;) — zi(ts)) /(ntp'n(cl).})
1=1 k=1

Once these solutions are obtained we can solve directly for the model variances. A selection of model and device
variances are then provided to the user, and the user is able to decide on the appropriate combination for their problem.
More rigorous mathematical derivations of these methods will be provided in future documentation versions. Once
the variances are estimated we not only attain good estimates for the system noise and the measurement error, but we
have also obtained excellent initializations for the parameter estimation problem, as well as good initial values for the
kinetic parameters to pass onto the ParameterEstimator class. Where Equation 17 from Chen, et al. (2016) is solved
directly:

Ntp Nwp 2
manZ( i —ch JEeY ) /62 (1.3)

s.t. Z im(T)zjm —h; - f(2jm,0) =0, j=1l.ngp, m=1UK

K
ZK(ti) = Z lm(T)ij; T = (ti - tpj—l)/(tpj - tpg]—ﬁ)

m=0

Note here that this can be solved either directly with the variances and measurement errors manually added and fixed
by the user, or through the use of the VarianceEstimator. It is also important at this point to note that we can solve
the ParameterEstimator problem either using IPOPT to get the kinetic parameters or we can use sIPOPT or k_aug to
perform the optimization with sensitivities in order to determine the confidence intervals.

1.4 Getting Started with KIPET

1.4.1 Creating a Model Instance

KIPET is comprised of many modules working in the background. Only two object classes are needed on the user’s
end. These are the ReactionModel and the ReactionLab classes.

All reactions are modeled as ReactionModel objects. If you are only considering a single reaction system or exper-
iment, the simplest way to use KIPET is through a single ReactionModel instance. To do this, simply import the
ReactionModel class from kipet and create an instance:

from kipet import ReactionModel
rl = ReactionModel('model-1")

1.4. Getting Started with KIPET 13
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1.4.2 Model Components

The ReactionModel class contains all of the methods necessary to use KIPET for a single model with a single dataset.
You can now use the ReactionModel instance rl to add all of the expected model components such as the kinetic
model and its parameters, the component information, and the data (if any). Parameters are added using the parameter
method. For example, if we have a three component system with two reactions in series:

A BIEC

rpa = kl OA
rp = k2Cp
This system has two reactions and if we model them as simple first order reactions at constant temperature, we only

have two parameters to fit: the reaction rate constants k1 and k2. This is done using the parameter method of the
ReactionModel instance.

k1 rl.parameter('kl"', value=2)
k2 = rl.parameter('k2', value=0.2)

Thus, two parameter are added to r1: k1 and k2 with initial values 2 and 0.2, respectively. If you perform a simulation,
these values will be the fixed parameter values in these models. For a full reference of parameter options, see parameter.

Since our system has three components, A, B, and C, these need to be declared as well. In KIPET components are
understood as being those species (chemicals or biological components) that are measured in concentrations. Com-
ponents of this nature are added to the ReactionModel using the component method. More specifically, these are the
components that can be measured using spectroscopic means. Under the hood, each component is treated as a state
variable. Each component requires at least a name and an initial value. In our current example, the components can be
defined as the following:

A = rl.component('A', value=1)
B rl.component('B', value=0.0)
C rl.component('C', value=0.0)

Here you can see that only species A is present at the start of the reaction and the other components B and C are not.

If you were to add complementary states such as temperature, pressure, etc., this can be done using the state method.
This should be used for all states that are not measured using concentration. For example, say there is a change in
temperature during the reaction. In order to model this temperature change, you would need to add a temperature state
variable to the model:

T = rl.state('T', value=500, units='K")

Notice here that you can optionally add the units for any model component using the keyword argument units. KIPET
has tools that ensure that units are converted to proper values and also checks for inconsistant unit types.

Note: Every ReactionModel will have a volume state created automatically. This is to enusre that some features of
KIPET that depend on volume always work properly. Thus, the variable name V is reserved for the volume state and
an error will be raised if you try to name a model component with this name. If you need to modify the volume state
(such as defining initial values and units), use the volume method.

rl.volume(value=0.45, units="mL")

In the same manner, model constants can be generated. If you are using dimensionless units or do not care to check the
units, you can simply add constants into the expressions (next section) using their numerical values. Suppose you have
a constant feed to the reactor of species A of 2 moles per liter per minute. This could be added to the model using the
following:

14 Chapter 1. Table of Contents
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C_Ain = rl.constant('C_Ain', value=2, units="M/min')

Another component that can be declared for use in a ReactionModel is a step function. The step method is a convenience
way to add on/off decisions or steps during the reaction time. For example, if the constant feed rate of A given above
is only to last for 5 minutes before being turned off, this behavior can be captured using a step component:

A_step = rl.step('A_step', time=5, fixed=True, switch='off')

Here you can see the intuitive nature of adding step variables. The first argument is the name, followed by the time
where the step occurs, whether the time is fixed at 5 or not (if False, it means that the step time is variable to be fit in
the parameter estimation), and the direction of the step (in this case we turn the A feed off). The next step is simply to
combine the flow rate of A with its step function during expression building.

# The flowrate of A into the reactor is
C_Ain * A_step

Step functions can be chained together for more complex on and off behaviors if needed. For example, if you needed to
model that the flowrate of A into the reactor starts again at 10 minutes, this can be done in a similar manner as before:

A_step_2 = rl.step('A_step', time=10, fixed=True, switch='on')

And then the steps can be combined into a single variable (actually an expression now):

A_step_all = A_step + A_step_2

Note: An improved version for chaining step functions is being worked on to simplify this procedure.

1.4.3 Expressions

For dynamic systems like chemical reactions, we necessarily work with ODEs. Each component and states is automat-
ically assigned an accompanying ODE in KIPET with a default value of zero. If you forget to assign a more specific
ODE, it will simply remain constant and not result in an error.

KIPET handles two types of expressions: ODEs and Algebraics. The key difference lies in how each is modeled in
KIPET. In our current example, there are two reactions (A —> B and B —> C). These can be constructed as:

The next step is to provide the reaction kinetics. The five variables that were defined above (kl, k2, A, B, C) are
all place holder Pyomo variables that can be used to construct expressions. This makes building expressions very
simple in KIPET. Expressions can be used in either ODEs or algebraic expressions. There are several ways to add such
expressions to KIPET.

rA = k1 * A
rB = k2 * B
or as

rA = rl.add_reaction('rA', k1*A)
rB = rl.add_reaction('rB', k2*B)

or equivalently

rA = rl.add_expression('rA', k1*A, is_reaction=True)
rB = rl.add_expression('rB', k2*B, is_reaction=True)

1.4. Getting Started with KIPET 15
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where the add_reaction method simply wraps the add_expression method and sets is_reaction to True for you. This
syntax is simpler to use in creating the model. Once the reactions and other possible expressions have been generated,
the ODEs can be created and added to the ReactionModel:

rl.add_ode('A', -rA)
rl.add_ode('B', rA - rB)
rl.add_ode('C', rB)

If you would prefer to use a stoichiometric matrix to build the system of equations for the reactions, this is possible as
well:

rA rl.add_reaction('rA', k1*A, description='Reaction A' )
rB = rl.add_reaction('rB', k2*B, description='Reaction B' )

stoich_data = {'rA': [-1, 1, O],
'rB': [0, -1, 1]}

rl.reactions_from_stoich(stoich_data, add_odes=True)

Note the form of the stoichiometric matrix. It takes the reaction name as the key and a list of stoichiometric coefficients
as the the values. If you provide the keys as the components instead, KIPET will automatically detect this and still build
the appropriate reaction network. The add_odes keyword argument is passed as True if the ODEs are based solely on
the reaction kinetics. If you with to add additional terms to the ODEs (such as to account for volume changes), you need
to set add_odes to False and use the returned dictionary of reaction ODEs to augment the expressions (see Simulation
of Advanced Reaction System with Algebraic equations (I1)).

For example, say we are feeding C to a reactor and need to take this into account after we have constructed the system of
reactions using the stoiciometric matrix. Simply set add_odes to False and use the returned dictionary of ODEs (here
RE) and simply add the volumetric change to the existing ODE. After you do this, the ODEs still need to be added to
the ReactionModel which can be done using the add_odes method.

RE = rl.reactions_from_stoich(stoich_coeff, add_odes=False)

# Modify component C due to its changing volume
RE['C'] += 0.02247311828 / (V * 210) * V_step

rl.add_odes(RE)

Note: You can still add additional ODEs to the ReactionModel afterwards. For example, if you need to add a volumetic
flowrate (like the one influencing C above), this can be added in the usual manner using add_ode.

You may also generate the stoichiometric matrix from the finished system of ODEs using the stoich_from_reactions
method. In order for this to work, you need to register the reactions using the add_reaction method. This becomes
important for reactions involving unwanted contributions in the spectral data.

Note: Volume changes are automatically applied to the ODE:s for all components. This follows the form of

.
14

where V is the volume state, V is the volume’s rate of change (its ODE), and C; is the concentration of
component 7.
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Note: You can disable the automatic generation of volume change terms in the settings:

rl.settings.general.add_volume_terms = False

1.4.4 Experimental Data

KIPET has several features that make it very simple to add experimental data to the ReactionModel. Before showing
how to add data to the model, it is important to know how to format the data and where KIPET expects the data to be

found.

KIPET expects the data file to be in the same directory, or a subdirectory thereof, as the python script containing the
model. If this is the case, then using the relative path to the data file is acceptable in your script.

# Working directory

reaction.py
data/

data_file.txt

The acceptable file in the example above is “data/data_file.txt”. If the data is not in the project directory then the full
path to the file should be used instead.

Data Formats

The data can be stored as a .zxt or .csv file. For state data, the data should be formatted using the component or state
name in the column header and the times in the index (the first columns) with no header. KIPET takes the file type into
account and formats the data appropriately.

For example:

B

D

A
_1

_2 | 0
"3 | 00333
4 | 0.0667
5 | 01
"6 | 01334
7 | 0.1667
8| 02
"9 | 02334
10 | 0.2667
11 | 0.3001
12 | 0.3334
13 | 0.3667
14 | 0.4001

0.001027028742248
0.001015414679356
0.001006906145442
0.000992635293416

0.00098201777305
0.000975664716599
0.000960539560883
0.000950302810967
0.000941685492661

0.00093460847914
0.000928029690184
0.000918578575377
0.000908572538801

0
2.20424950420788E-06
1.30414639175767E-05

2.4680620670202E-05
3.4599256054874E-05
4.11158253447824E-05
5.3551747983587E-05
6.04934532306774E-05
6.8398757115534E-05
7.53412578575117E-05
8.09167827666822E-05
8.54575497802487E-05
9.31849659099066E-05

1.26220046667191E-05
2.05558878076343E-05
1.76369281062045E-05
1.37628033141861E-05
1.23810673181812E-05
1.17955865714225E-05
1.09843376496413E-05
1.31516275743194E-05
1.05750176499706E-05
1.10390884072201E-05
9.03160249866784E-06
1.11497545099864E-05
1.30003145602247E-05

Fig. 1.7: How the data should be arranged for state data

1.4. Getting Started with KIPET
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If the data comes in the form of a .zxt file, the data should be organized line for line like the following:

time, component, measured value

0.0, A, 0.0010270287422477187
0.0, B, 0.0
0.0, C, 1.2622004666719102e-05
0.0333, A, 0.0010154146793560827
0.0333, B, 2.2042495042078835e-06
0.0333, C, 2.0555887807634343e-05
0.0667, A, 0.001006906145441944
0.0667, B, 1.3041463917576706e-05
0.0667, C, 1.7636928106204522e-05
0.1, A, 0.0009926352934163576
0.1, B, 2.4680620670202026e-05
0.1, C, 1.3762803314186124e-05
etc...

Spectral data should have the first column contain the measurement times and the columns thereafter the wavelengths.

See the image below for an example.

A | B | © | D E F G | H |
1 180 181 182 183 184 185 186
2 0 0.0096 0.0196 0.0257 0.0288 0.0258 0.0191 0.0139
3 0.2 0.0089 0.0139 0.0184 0.0216 0.0181 0.0148 0.0087
4 0.4 0.0074 0.0110 0.0173 0.0169 0.0175 0.0124 0.0071
5 06 0.0022 0.0039 0.0047 0.0047 0.0043 0.0024 0.0036
6 08 0.0053 0.0085 0.0077 0.0128 0.0098 0.0070 0.0049
7 1 0.0038 0.0038 0.0074 0.0089 0.0095 0.0073 0.0038
8 12 0.0017 0.0032 0.0017 0.0023 0.0032 0.0032 0.0013
9 14 0.0042 0.0052 0.0060 0.0083 0.0089 0.0068 0.0043
10 16 0.0007 0.0020 0.0021 0.0043 0.0044 0.0031 0.0032
1 18 -0.0007 0.0019 0.0014 0.0017 0.0015 0.0016 0.0031
12 2 0.0016 -0.0017 -0.0004 -0.0011 -0.0008 -0.0011 0.0010
13 2.2 0.0049 0.0052 0.0070 0.0079 0.0071 0.0057 0.0065
14 24 0.0021 0.0019 0.0022 0.0048 0.0025 0.0035 0.0039
15 26 0.0053 0.0082 0.0104 0.0125 0.0107 0.0096 0.0072
16 2.8 -0.0016 -0.0010 -0.0004 -0.0012 -0.0010 0.0016 0.0020
17 3 0.0000 0.0012 0.0011 0.0026 0.0024 0.0018 0.0014
18 3.2 0.0052 0.0042 0.0045 0.0055 0.0032 0.0035 0.0048
19 3.4 0.0039 0.0050 0.0053 0.0053 0.0054 0.0029 0.0050
20 3.6 -0.0017 -0.0041 -0.0048 -0.0051 -0.0044 -0.0035 0.0003
21 38 0.0009 0.0032 0.0030 0.0039 0.0040 0.0041 0.0019

Fig. 1.8: How the data should be arranged for spectral data

If the data comes in the form of a .zxt file, the data should be organized line for line like the following:

time, wavelength, measured value

0.0000, 1610.00, 0.074030
0.0000, 1620.00, 0.076191
0.0000, 1630.00, 0.077368
0.0000, 1640.00, 0.078412
0.0000, 1650.00, 0.083268
0.0000, 1660.00, 0.087972

(continues on next page)
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(continued from previous page)

0.0000, 1670.00, 0.082916
0.0000, 1680.00, 0.084603
0.0000, 1690.00, 0.088627
0.0000, 1700.00, 0.089958
0.0000, 1710.00, 0.085465
etc...

Adding the Data

The previous cases assumed that you were loading a datafile directly into KIPET. If this is the case, adding data is as
simple as

rl.add_data(file="data/data_file.txt")

using the same example as before.

If you wish to use your own data frame as data instead of loading directly from a file, this can be done by using the
keyword argmument data:

rl.add_data(data=<your_dataframe_goes_here>)

Also, you can use the methods read_data and write_data to load and write data in the KIPET format. These methods
are accessible at the top-level:

data_frame = kipet.read_data('filename")
data_frame = data_frame.iloc[:, ::10]
kipet.write_data('reduced_by_10_data.csv")

KIPET will automatically check if the entered components and states match with the column headers in the data added
to the ReactionModel. It does not matter if the data is entered in before or after the components and states are declared.
Once the data has been added to the ReactionModel, it can be accessed through the datasets attribute.

rl.datasets['name_of_the_dataset']

Here the name of the dataset is either provided as the first positional argument to add_data or will be automatically
generated based on the type of data added. For example, concentration data added without a name is named ‘C_data’.
State data is given the name ‘U_data’. The dataset class contains a handful of methods that can be used to visualize the
data, remove negative values, and more.

Due to the difference in structure of the spectral data, it is not found in the datasets attribute, but rather in the spectra
attribute. The spectra attribute of the ReactionModel class is really a SpectralHandler object that contains various
preprocessing tools as well as a plotting tool specifically designed for spectral data.

See the add_data method in ReactionModel for more information pertaining to other arguments and methods related to
data in KIPET. Also checkout the SpectraHandler class and the DataComponent class to learn more about these objects
and how to manage data in KIPET.
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1.4.5 Simulation

Once you have added all of the necessary components to the ReactionModel you are ready to perform simulation and/or
parameter fitting. If you do not add any experimental data to the ReactionModel, you cannot proceed with parameter
fitting and will only be able to perform simulations. In this case the simulator requires a start and an end time. In this
case, the start time is generally zero and is not very important. The end time determines when the simulation will end
and is therefore required. If you do provide experimental data with your simulation model, KIPET will automatically
determine the end time based on the last measured data point. If you provide your own end time, this will override the
time determined from the data.

rl.set_time(10)

In the example above the end time is set at 10 (units can be derived from the base time unit configured using the
ReactionModel).

Once the model is complete with the start and end times, running the simulation is as simple as

rl.simulate()

The simulator in KIPET is based on a finite element by finite element approach to ensure robustness of the solution
and a high chance of convergence.

Note: If you have trouble simulating a model it may be the case that it is too stiff. Try increasing the number of finite
elements in the model until it converges.

rl.settings.collocation.nfe = <number of finite elements>

1.4.6 Parameter Fitting

The parameter fitting is also quite simple to use in KIPET. After the model is complete and includes experimental data,
the parameter fitting can be started using the run_opt method.

rl.run_opt()

Depending on the type of problem, a series of steps begins so that the solution to the parameter fitting problem can
be found. It begins with a simulation no different from performing a stand-alone simulation. This is done using the
initial values to provide the model with good initial values for the variables not defined by the user. These include
the concentration profiles, absorbance profiles, and other variables. This greatly increases the speed of convergence
and reduces the chance of having it fail to solve. If the reaction data contains spectral data, the variance estimation
stage follows the simulation. Here, also depending on the method used to estimate the variances, the variance of each
component is predicted from the spectral data and the model structure. After these variances are known, the parameter
fitting may proceed. If only concentration data is present, the variances need to be provided to the model before the
parameter fitting begins. Thus, problems with only concentration data jump straight to parameter fitting and do not
require a variance estimation step. After the parameter estimation is complete, the results are stored in a ResultsObject
that can be reached using the results attribute of the ReactionModel instance. All relevant variables are found here
alongside their optimal trajectories in convenient data forms dependent upon the dimensionality of the data.

Also, once the results are available, there are many plotting tools that can be used to plot the various results obtained.
This is accessed using the plot method of the ReactionModel class and takes the variable name in the model as the
parameter. If no parameter is passed to plot, all plots related to the model are generated.
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1.4.7 Plotting Results

KIPET provides robust plotting methods that make it easy to display the results from simulation and parameter fitting
problems. Plots are generated using the Plotly package and are saved as both HTML and SVG file types. The plot
methods can be accessed simply by using the plot method. All plots are stored in a folder called “charts” that will be
created in the working directory.

rl.plot() # plots all related charts
rl.plot('Z") # plots all concentration charts
rl.plot('A") # plots the component A
rl.plot('V') # plots the volume

# and so on

1.4.8 Settings

If you happen to have used an earlier version of KIPET, you may have noticed that the user was responsible for entering
in various options for the variance estimator, parameter estimation, multiple experiments estimator, and so on. In the
latest version of KIPET, many of the options are maintained in the background with usually good default values for
most problems. However, if you would like to change the default settings, you are free to do so. This can be done by
accessing the Settings object through the settings attribute of the ReactionModel instance.

For example, you can change the number of collocation points and the number of finite elements by the following:

3
100

rl.settings.collocation.ncp
rl.settings.collocation.nfe

To see all options available, simply type rl.settings into the command prompt. The name in parathenses after the
settings section title (i.e. General Settings (general)) is the name used to access this setting. For example, in the
example above we change the collocation setting by accessing settings.collocation.ncp and settings.collocation.nfe, as
can be seen below. In this way, the user can modify any of the settings using simple dot notation.

>> rl.settings

General Settings (general):

confidence : 1
initialize_pe : True
no_user_scaling : True
scale_parameters : False
scale_pe : True
scale_variances : False
simulation_times : None

Unit Settings (units):

concentration : M
time : hr
volume : L

Collocation Settings (collocation):

method : dae.collocation
ncp : 3
nfe : 60

scheme : LAGRANGE-RADAU

(continues on next page)
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(continued from previous page)

Simulation Settings (simulator):
solver : ipopt
tee : False
solver_opts : {}

# and many more. ..

If you would like to change the default values permanently, you can do this by changing the settings.yml file in the kipet
directory.

1.5 Examples

This section includes several examples showing many of the features included in KIPET. If you are new to KIPET, it is
recommended to first visit the Getting Started with KIPET section to learn the basics. Once you are familiar with the
basic structure of KIPET, the following examples can be used as starting points for various types of project needs.

1.5.1 Introduction to Simulation

Files Ex_1_ode_sim.py
This example provides a basic 3-component, 2 reaction system with A — B and B — C, where the kinetic rate constants
are fixed.
A BIEC
rpa = kl CA
rp = k2Cp

Before going into more detail, the complete block of code required to simulate this simple reaction is presented. As
you can see, the user does not require much coding to use KIPET.

# Create the ReactionModel instance
rl = kipet.ReactionModel('reaction-1")

# Change the desired time basis here (if different from default)

Tt

rl.unit_base.time = 's

# Add the model parameters
k1l = rl.parameter('kl', value=2, units='1/s")
k2 = rl.parameter('k2', value=0.2, units="1/s")

Declare the components and give the initial values
= rl.component('A', value=1.0, units="M")
rl.component('B', value=0.0, units="'M")
rl.component('C', value=0.0, units="'M")

N W > H%

# Input the reactions as expressions
rA = rl.add_reaction('rA', k1*A)
rB = rl.add_reaction('rB', k2*B)

# Input the ODEs

(continues on next page)
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rl.add_ode('A', -rA )
rl.add_ode('B', rA - rB )
rl.add_ode('C', rB )

# Option to check the units of your models
rl.check_model_units(display=True)

# Add dosing points
rl.add_dosing_point('A', 3, 0.3)

# Simulations require a time span
rl.set_time(10)

# Change some of the default settings
rl.settings.collocation.ncp = 3
rl.settings.collocation.nfe = 50

# Simulate
rl.simulate()

# Create plots
rl.plot()

We will now break this down step by step. The first step is to import the kipet module or the KipetModel class from
the kipet module as in the example.

import kipet

The kipet package contains all of the methods necessary to use KIPET. The next step is to create an instance of the
ReactionModel class. Note that the reaction requires a name as the first argument.

rl = ReactionModel('reaction-1")

We can now use the ReactionModel instance “rl1” to add all of the expected model components such as the kinetic
model and its parameters, the component information, and the data (if any). Parameters are added using the parameter
method, as seen in the current example where there are two parameters:

k1l = rl.parameter('kl', value=2)
k2 = rl.parameter('k2', value=0.2)

Since our system has three components, A, B, and C, these need to be declared as well. Each component requires at a
minimum a name. For simulations, an initial value for each of the components is also required.

A rl.component('A', value=1)
B rl.component('B', value=0.0)
C = rl.component('C', value=0.0)

The next step is to provide the equations needed to define the reaction kinetics. The reaction kinetic rules are placed
into the model using the add_reaction method. Please note that KIPET requires that each declared component has its
own expression. Once the reactions have been declared, the ODEs for each component can be constructed.

# Define explicit system of ODEs
rA = rl.add_reaction('rA"', k1*A )

(continues on next page)
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rB = rl.add_reaction('rB', k2*B)

# Add the ODEs to the model
rl.add_ode('A', -rA)
rl.add_ode('B', rA - rB)
rl.add_ode('C', rB)

At this point we have provided KIPET with a reaction model, component information, and parameter data. The start
time is always set to zero so only the duration of the simulation is needed. This can be set using the set_time method.
As we will see in the parameter estimation problems, explicitly providing start and end times is not necessary if exper-
imental data is provided.

rl.set_time(10)

After this we are ready to simulate using the simulate method. The results are then accessible using the results attribute.
This attribute points to an instance of the ResultsObject class. The most basic plotting tool can be accessed using the
plot method of the ReactionModel instance.

rl.simulate()
rl.plotQ)

The results are then presented in a new browser tab using Plotly similar to the following figure. Figures are also saved
as SVG files in the same directory.

Fig. 1.9: Plot obtained from tutorial example 1

1.5.2 Introduction to Parameter Estimation

Files Ex_2_estimation.py

In the second example we will be looking at a parameter estimation problem where we combine most of the elements
discussed in the Overview section of this document. This example is the same reaction system as the previous ex-
ample, except in this case we use a simulated spectral data set as our input D-matrix. This example, while not too
computationally complex provides a good overview of all the capabilities of KIPET. So, again we are considering the
following:

A B IE O

ra=Fk1Cy
rg = koCp

The full code for this example:

import kipet
rl = kipet.ReactionModel('reaction-1")
# Add the model parameters

k1l = rl.parameter('kl’', value=0.3, bounds=(0.0, 5.0))
k2 = rl.parameter('k2', value=1.4, bounds=(0.0, 3.0))

(continues on next page)
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Declare the components and give the initial values
= rl.component('A', value=1)

= rl.component('B', value=0.0)

rl.component('C', value=0.0)

N W > H

# Input data
file_name = 'data/Dij.txt'
rl.add_data(category="spectral', file=file_name)

# Input the reactions as expressions
rA = rl.add_reaction('rA', k1*A)
rB = rl.add_reaction('rB', k2*B)

# Input the ODEs
rl.add_ode('A', -rA )
rl.add_ode('B', rA - rB )
rl.add_ode('C', rB )

# Optinal bounds on the S profiles
rl.bound_profile(var='S"', bounds=(0, 10))

# Change some of the default settings
rl.settings.collocation.ncp = 1
rl.settings.collocation.nfe = 60
rl.settings.parameter_estimator.tee = True

# Parameter fitting
rl.run_opt()

# Plot results
rl.plot(Q)

As you can see, much of the modeling is similar to those found in the first example. The differences between the two
are explained below.

Reading data

Firstly we will need to input our D-matrix that contains the spectral data. More notes on the structure of these data
files and which file types are permitted are found /ere. In order to do this we need to point the model to the data file.
We can do this by using the add_dataset method. If you are using spectral data, as in this case, the category argument
needs to be ‘spectral’. The location of the file should be given with the “file” argument.

rl.add_data(category="spectral', file='data/Dij.txt')

Spectra data is handled in a different manner than state data. The ReactionModel object has a spectra attribute that
is a SpectralData object that allows for various pre-processing techniques to be applied to the spectral data before the
parameter fitting.

Also new here is the optional declaration of bounds for the individual species absorbance (S) profiles. This is done
using the “bound_profile” method:

rl.bound_profile(var='S', bounds=(0, 10)
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Settings

If you wish to change the default settings for the collocation method, you can access these using the settings attribute.
The code below shows how to change the number of collocation points (ncp) and the number of finite elements (nfe)
for the variance estimation and the parameter estimation.

rl.settings.collocation.ncp 1
rl.settings.collocation.nfe = 60

You can also limit the set of wavelengths to use in initializing the problem. For large problems it might be worthwhile
using smaller wavelength subsets to work with less data, saving computational time. For problems with a lot of noise,
this can be very useful. This can be accessed using the decrease_wavelengths method of the spectra attribute. This
method takes an integer as the first (and required) parameter.

rl.spectra.decrease_wavelengths(4)

Many of the required options for the variance estimation and parameter estimation can be accessed using the settings
attribute of the ReactionModel instance. You can look at the various options by printing the settings attribute to the
console. For more information about settings in KIPET, see /ere.

rl.settings

For many of the problems it is not possible to use the user scaling option as the solver type has now changed. In
addition, since the stochastic solver requires the solving of a more difficult problem, it is sometimes necessary to apply
different solver options in order to find a feasible solution. Among the options commonly found to increase the chances
of a feasible solution, the ‘mu-init’, option can be set to a suitably small, positive value. This option changes the initial
variable value of the barrier variable. More information can be found in the [IPOPT documentation.

Solver settings can be set in the following manner:

rl.settings.solver.<solver setting> = <option>

Variance Estimation and Parameter Fitting

Previously the variance estimation step was required to be set up by the user. This is now handled in the background
by KIPET for you. You can change the way in which the variances are calculated by altering the settings.

To solve the problem, simply run the following:

rl.run_opt()

The results and plots can now be displayed.

rl.results.show_parameters
rl.plot()

The results will then be shown as:

The estimated parameters are:
k2 0.201735984306
k1l 2.03870135529

Providing us with the following plots:
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Fig. 1.10: Concentration profile results from tutorial example 2

Fig. 1.11: Pure component absorbance profiles (S) result from tutorial example 2

1.5.3 Simulating Advanced Reaction Systems with Additional States

Files Ex_3_complementary.py

It is also possible to combine additional complementary states, equations and variables into a KIPET model. In this
example a problem is solved that includes a temperature and volume change. In this example the model is defined
in the same way as was shown before, however this time the complementary state variable temperature is added as a
component using the state method.

The system of equations is:

k1= 1.25¢ 087 (so0— T (1.7)
k2 = 0.08¢ 1987 (2901 8)
ra = —HN
rp = 0.5k A kB
rc =@ktB
Cao &.12)
Vo €24)

T, = 35000(298(} [#)
T, = 4 - 240 - 30(T «B05)
Ty = V(6500k; A — 800Gk, 18)
Den = (304 + 608 + 20C)V K BAM)
(1.18)

Using these expressions, the ODE:s for this example reaction are:

A=ra+(Cao—A))V (1.19)
B =rp — Bil1»)

C =rc — OV

T = (T) + Ty + T3 )A22)

V(ER

At this time, modeling using certain expressions (like ‘exp’ in the following expressions) requires importing the func-
tions from pyomo.core.

import kipet

# This is needed for the construction of the ODEs
from pyomo.core import exp

rl = kipet.ReactionModel('reaction-1")

# Declare the components and give the initial values
A = rl.component('A', value=1.0)

(continues on next page)
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o5}
|

= rl.component('B', value=0.0)
rl.component('C', value=0.0)

@)
1l

# Declare the complementary states and their initial values
T = rl.state('T', value=290, description='Temperature')
') rl.state('V', value=100, description='Volumne')

Similar to components, each complementary state will require an ODE to accompany it. In the case of this tutorial
example, the following ODEs are defined:

# Define the expressions - note that expression method is not used!
k1l = 1.25%exp((9500/1.987)*(1/320.0 - 1/T))
k2 = 0.08%exp((7000/1.987)*(1/290.0 - 1/T))

ra = -k1%A

rb = 0.5*k1*A - k2*B
rc = 3*k2*B

cao = 4.0

vo = 240

Tl = 35000%(298 - T)

T2 = 4%240%30.0%(T-305.0)
T3 = V*(6500.0%k1*A - 8000.0*k2*B)
Den = (30%A + 60*B + 20%C)*V + 3500.0

# Add ODEs

rl.add_ode('A', ra + (cao - A)/V )
rl.add_ode('B', rb - B*vo/V )
rl.add_ode('C', rc - C*vo/V )
rl.add_ode('T', (T1 + T2 + T3)/Den )
rl.add_ode('V', vo )

# Simulation requires a time span
rl.set_time(2.0)

# Change some of the default settings
rl.settings.collocation.nfe = 20
rl.settings.collocation.ncp = 1

# Simulation
rl.simulate()

# Create plots
rl.plot()

We can then simulate the model (or use experimental data if available and estimate the parameters) in the same way as
described in the previous examples. Please follow the rest of the code and run the examples to obtain the output.

Fig. 1.12: Concentration profiles from Tutorial 3
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Fig. 1.13: Temperature profile from Tutorial 3

1.5.4 Simulation of Advanced Reaction System with Algebraic equations (l)

Files Ex_4_sim_aspirin.py

Now that complementary states are understood we can explain perhaps the most conceptually difficult part in KIPET,
the idea of algebraic variables. The terms algebraics and algebraic variables are used in KIPET when referring to
equations and variables in larger models that can be used to determine the ODEs where we have a number of states
and equations. This can be illustrated with the Aspirin case study from Chen et al. (2016) where we have the more
complex reaction mechanism:

SA + AA 5 ASA + HA (1.24)
ASA + AA %2 ASAA (1B
ASAA + H,0 =2 ASA ¢1H6)
AA + H,0 55 q187
SA(s) > 6AT8)
ASA(I) L2 ASA29)
With rate laws:

r1 = kicsa(t)caa(t) (1.30)
ro = kacasa(t)cldait)

r3 = kscasaa(t)cHloi2)

r4 = kacan(t)cJ33)

ry = ka(cg4(T) — csa(t)?, if mSA(l% )
0, otherwise

re = ke(max(casa(t) — c§4(T)(1033)
And these can then be used to describe the concentrations of the liquid and solid components with the ODEs:

mga = —MsaVrq (1.36)
. v

CSA=Tqg—T1 — ﬁ%@

. 1

CAA=—T1—T2—Tq4— ﬁldx&)

. 14
CHA =T1 +T2+7‘3+2'7‘4—¢v,1ﬂ319,4)
masa = MasdVa0)

. 1%4
CASA=T1—T2+7T3—Tg— ﬁdA%l&

. Vv
CAsAA = T2 — T3 — —cldsd

\%
CH,0 = —T3 — T4+ écHgO - ‘7(411‘533
) ns 4 f )
V= VZ v; Z%,jrj + Vi, d"d + Vi,cTe + Eivc?@d‘ )
i=1 j=1

1.5. Examples 29


https://github.com/kwmcbride/kipet_examples/blob/master/examples/example_4/Ex_4_sim_aspirin.py

KIPET Documentation, Release 0.2.4

From these two sets of equations, we can derive the algebraic expressions for the reactions and then construct the ODEs
for the components and other states.

from pyomo.environ import exp
import kipet

rm = kipet.ReactionModel('reaction-1")

# Components

SA = rm.component('SA', value=1.0714, description='Salicitilc acid")

AA = rm.component('AA', value=9.3828, description='Acetic anhydride')

ASA = rm.component('ASA', value=0.0177, description='Acetylsalicylic acid')

HA = rm.component('HA', value=0.0177, description='Acetic acid')

ASAA = rm.component('ASAA', value=0.000015, description="Acetylsalicylic anhydride')
H20 = rm.component('H20', value=0.0, description='Water')

# Parameters

k® = rm.parameter('k0', value=0.0360309)
k1l = rm.parameter('kl’', value=0.1596062)
k2 = rm.parameter('k2', value=6.8032345)
k3 = rm.parameter('k3"', value=1.8028763)
kd = rm.parameter('ks', value=7.1108682)
kc = rm.parameter('kc’', value=0.7566864)
Csa = rm.parameter('Csa’',value=2.06269996)

In this example we need to declare new sets of states in addition to our components and parameters, as with the previous
example.

# Additional state variables

V = rm.state('V', value=0.0202)
Masa = rm.state('Masa', value=0.0)
Msa = rm.state('Msa', value=9.537)

# Fixed states (data is provided using the data keyword argument)
f = rm.fixed_state('f', description="flow f', data="traj')
Csat = rm.fixed_state('Csat', description='C saturation', data='traj')

Note: When using fixed states the FESimulator cannot be used! The simulator needs to be set to ‘dae.collocation’ in
the settings. This is due to the fixed algebraic trajectories not being supported at this time.

For the final equation in the model (Equn 36) we also need to define the stoichiometric coefficients, gammas, and the
epsilon for how the added water affects the changes in volume.

gammas = dict()

gammas['SA']= [-1, ®, 0, O, 1, 0]
gammas['AA']= [-1,-1, 0,-1, 0, 0]
gammas['ASA']= [1,-1, 1, 0, 0,-1]
gammas[ 'HA']= [1, 1, 1, 2, 0, 0]
gammas['ASAA']= [ 0, 1,-1, 0, 0, 0]
gammas [ 'H20']= [ o6, 0,-1,-1, 0, 0]

epsilon = dict(Q)

(continues on next page)
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epsilon['SA']= 0.0
epsilon['AA']= 0.0
epsilon['ASA']= 0.0
epsilon['HA']= 0.0
epsilon['ASAA']= 0.0
epsilon['H20']= 1.0

partial_vol = dict(Q)
partial_vol['SA']=0.0952552311614
partial_vol['AA']=0.101672206869
partial_vol['ASA']=0.132335206093
partial_vol['HA']=0.060320218688
partial_vol['ASAA']=0.186550717015
partial_vol['H20']=0.0883603912169

At this point we can add the data to the model. The external files are the csv’s and the state is considered to be
“trajectory”. Following this, external files are also used for the flow of water fed into the reactor, as well as the saturation
concentrations of SA and ASA (functions of temperature, calculated externally).

filename = 'data/extra_states.txt'
rm.add_data('traj', category='trajectory', file=filename)

filename = 'data/concentrations.txt'
rm.add_data('conc', category='trajectory', file=filename)

filename = 'data/init_Z.csv'
rm.add_data('init_Z', category='trajectory', file=filename)

filename = 'data/init_X.csv'
rm.add_data('init_X', category='trajectory', file=filename)

filename = 'data/init_Y.csv'
rm.add_data('init_Y', category='trajectory', file=filename)

To define the algebraic equations in Equn (35) we then use:

# Reaction rates

r® = rm.add_reaction('r0', k0®*SA*AA, description='Reaction 0')

rl = rm.add_reaction('r1', k1*ASA*AA, description='Reaction 1' )
r2 = rm.add_reaction('r2', k2*ASAA*H20, description='Reaction 2' )
r3 = rm.add_reaction('r3', k3*AA*H20, description='Reaction 3')

step = 1/(1 + exp(-Msa/le-4))
r4 = rm.add_reaction('r4', kd*(Csa - SA + le-6)**1.90*step, description='Reaction 4' )

diff = ASA - Csat
r5 = rm.add_reaction('r5', 0.3950206559%kc* (diff+((diff)**2+1e-6)**0.5)**1.34,.,
—.description="Reaction 5' )

Since the stoichiometric coefficients and the reaction equations are known, the component ODEs can be built auto-
matically. Since the ODEs need to be augmented with the volume changes, the ODEs are returned from the reac-
tions_from_stoich method. Once finished with the ODEs, they need to be added to the model in the usual way using
add_ode.

1.5. Examples 31




KIPET Documentation, Release 0.2.4

# Generate the ODEs for the reactions based on the stoichiometric matrix
# Since we need to modfiy the ODEs, add_odes should be False
odes = rm.reactions_from_stoich(gammas, add_odes=False)

v_sum_float = 0
Cin = 39.1

# Build expression for the volume
for com in rm.components.names:
v_sum_float += partial_vol[com] * (odes[com] + epsilon[com]*£f/V*Cin)

v_sum = rm.add_expression('v_sum', v_sum_float, description='Volume Sum')

# If calling a component (such as A or B) in a loop, use the pyomo_var attribute
# Add ODEs for the components
for com in rm.components.names:
rm.add_ode(com, odes[com] + epsilon[com]*f/V*Cin - v_sum”rm.components[com] .pyomo_
-,var)

# Add ODEs for complementary states
rm.add_ode('V', V*v_sum )
rm.add_ode('Masa', 180.157*V*r5 )
rm.add_ode('Msa', -138.121*V*r4 )

At this point the model is almost ready and only the final details are needed before simulation.

# Simulations require a time span
rm.set_time(210.5257)

# Settings
rm.settings.collocation.nfe = 100

rm.settings.simulator.method = 'dae.collocation'’
rm.settings.simulator.solver_opts.update({'halt_on_ampl_error' :'yes'})

# Initialize the model variables with the provided data

rm.initialize_from_trajectory('Z', 'init_Z'")
rm.initialize_from_trajectory('X', 'init_X'")
rm.initialize_from_trajectory('Y', 'init_Y")

# Run the simulation
rm.simulate()

# Plot the results
rm.plot('Z")

Fig. 1.14: Concentration profiles from Tutorial 4.
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1.5.5 Simulation of Advanced Reaction System with Algebraic equations (ll)

Files Ex_5_sim_fe_by_fe.py

Another functionality within KIPET is to use a finite element by element approach to initialize a problem. If you
consider a fed-batch process, certain substances are added during the process in a specific manner dependent on time.
This can be modeled using additional algebraic and state variables, similar to the process shown in the previous example.

In this tutorial, the following reaction system is simulated.

AH+B ™ A~ + BH"
A™ 4+ C 2 (nap)
AC™ =225 ATIHD
AC™ + AH 2 P ¢1.48)
AC™ + BHT ™ P1-4B

(1.50)
r1 = k1CA46B
ro = koC L6
r_2 = k_o(14&3)
13 = k3Cac(Cah
ry = kaCyo- C3d)

Which is represented by the following ODE system:

av {const flowrate, t3.5h

T 0, t > 3.5h

% = —r1+7“4—%-6}9

dccvl?* =71 —To+T_o+73— %ES‘Q)
R

% e ch . {andd/V/S.S, t&%ﬁilz)
dC'C,?tc* — Py — g — 1y — Ty — KOA@)

% =73+1r4 — %;633

(1.45)

(1.56)

import kipet
rl = kipet.ReactionModel('reaction-1")

# Components

AH = rl.component('AH', value= 0.395555)
B rl.component('B', value= 0.0351202)
C = rl.component('C', value= 0.0)

(continues on next page)
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BHp = rl.component('BHp', value= 0.0)

Am = rl.component('Am',
ACm = rl.component('ACm',
value= 0.0)

P = rl.component('P',

# Parameters

k® = rl.parameter('k0’,
k1l = rl.parameter('kl’,
k2 = rl.parameter('k2’',
k3 = rl.parameter('k3",
k4 = rl.parameter('k4d’',

# States

value= 0.0)
value= 0.0)

value=49.7796)
value=8.93156)
value=1.31765)
value=0.31087)
value=3.87809)

V = rl.volume(value=0.0629418, units='L")

# Stoichiometric coefficients

stoich_coeff = dict(Q)
stoich_coeff['AH'] = [-1
stoich_coeff['B'] =
stoich_coeff['C'] =
stoich_coeff['BHp']
stoich_coeff['Am'] = [
stoich_coeff['ACm']
stoich_coeff['P'] =

[-1
(o

(o,

, 0, 0, -1, 0]
0, 0, 0, 1]
, -1, 1, 0, 0]
[1, 0, 0, 0, -1]
1, -1, 1, 1, 0]
[ 1, -1, -1, -1]
0, 1, 1]

V_step = rl.step('V_step', time=210, fixed=True, switch='off'")

V_flow = rl.constant('V_flow', value=7.27609e-5)

y® = rl.add_reaction('y0"',
yl = rl.add_reaction('yl"',
y2 = rl.add_reaction('y2',
y3 = rl.add_reaction('y3"',
y4 = rl.add_reaction('y4"',

k0*AH*B, description='Reaction 0')
k1*Am*C, description='Reaction 1')
k2*ACm, description='Reaction 2')
k3*ACm*AH, description='Reaction 3')
k4*ACm*BHp, description='Reaction 4')

RE = rl.reactions_from_stoich(stoich_coeff, add_odes=False)
# Modify component C

RE['C'] += 0.02247311828 / (V * 210) * V_step

# ODEs - volume change terms added automatically
rl.add_odes(RE)

rl.add_ode('V', V_flow*V_step)

The dosing points need to be entered in using the following syntax: (‘component name’, time, amount). See the
following code as an example. You can add as many such dosing points as needed.

# Add dosing points (as many as you want in this format)
# ('‘component_name', time, conc=(value, units), volume=(amount,
rl.add_dosing_point('AH', time=100, conc=(1.3, 'M'), vol=(20,

units))

‘mL"))

The simulation is now ready.

rl.set_time(600)

(continues on next page)

34 Chapter 1. Table of Contents




KIPET Documentation, Release 0.2.4

(continued from previous page)

rl.settings.collocation.nfe = 40
rl.settings.simulator.method = 'fe'

rl.simulate()

if with_plots:
rl.plot('Z")

Fig. 1.15: Concentration profile of solution to Tutorial 5

1.5.6 Reaction Systems with Known Non-Absorbing Species

Files Ex_6_non_absorbing.py

If you are aware of which species are non-absorbing in your case in advance, you can exclude them from the identifi-
cation process, fixing the associated column in the S-matrix to zero, and also excluding its variance. You declare your
components as in the examples above and then additionally declare the non-absorbing species by the following lines.
If species ‘C’ is non-absorbing, then simply set its absorbing argument to False when declaring the component.

rl.component('C', value=0.0, absorbing=False)

In the plot of the absorbance profile the non-absorbing species then remains zero as you can see in the following results.

import kipet
rl = kipet.ReactionModel('reaction-1")

# Add the model parameters
rl.parameter('kl', value=2, bounds=(0.1, 5.0))
rl.parameter('k2"', value=0.2, bounds=(0.01, 2.0))

Declare the components and give the initial values

= rl.component('A', value=1)

= rl.component('B', value=0.0, known=True, bounds=(le-8, le-4))
rl.component('C', value=0.0, absorbing=False)

N W > H%

# Add the data
rl.add_data(category="spectral', file='example_data/Dij.txt")

# define explicit system of ODEs
rA = rl.add_reaction('rA', kl1*A, description='Reaction A' )
rB = rl.add_reaction('rB', k2*B, description='Reaction B' )
# Use the stoichiometry to build the reaction network:
stoich_data = {'rA': [-1, 1, 0],

'rB': [0, -1, 113

rl.reactions_from_stoich(stoich_data)

# Settings

(continues on next page)
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1
—_

rl.settings.collocation.ncp
rl.settings.collocation.nfe

60

rl.run_opt()
rl.results.show_parameters
rl.plot()

Confidence intervals:
k2 (0.9999997318555397,1.0000000029408624)
k1l (0.09999999598268668,0.10000000502792096)

The estimated parameters are:
k2 0.999999867398201
k1 0.10000000050530382

Fig. 1.16: Concentration profile of solution to Tutorial 6

Fig. 1.17: Absorbance profiles in Tutorial 6

1.5.7 Parameter Estimation Using Concentration Data

Files

Ex_7_concentration_heterogeneous_data.py
Ex_7_concentration_input.py
Ex_7_binary_reaction.py
KIPET provides the option to also input concentration data in order to perform parameter estimation. The first term

in the objective function (equation 17) is disabled in order to achieve this, so the problem essentially becomes a least
squares minimization problem. The example, “Ex_7_concentration_input.py”, shows how to use this feature.

import kipet
rl = kipet.ReactionModel('reaction-1")

# Add the model parameters
k1l = rl.parameter('kl’', value=2.0, bounds=(0.0, 5.0))
k2 = rl.parameter('k2', value=0.2, bounds=(0.0, 2.0), fixed=False)

Declare the components and give the initial values

= rl.component('A', value=0.001, variance=1e-10, known=True, bounds=(0.0, 3))
rl.component('B', value=0.0, variance=1le-11)

rl.component('C', value=0.0, variance=1e-8)

N W > 3%

If the component data has been entered into the model before the data, the add_dataset method will automatically check
if the component names match the column headers in the dataframe and add them to the model template in the correct
category. In the case that data is added before, KIPET will match up the data with components before building the
model in TemplateBuilder.

In the following, the data is first loaded and only every 10th data point is used in parameter fitting.
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# Load the data and reduce the number of data points
filename = 'data/Ex_1_C_data.txt'

full_data = kipet.read_data(filename)
rl.add_data(data=full_data.iloc[::10, :], remove_negatives=True)

# Define the reaction model
rl.add_ode('A', -k1 * A )
rl.add_ode('B', k1 * A - k2 * B )
rl.add_ode('C', k2 * B )

# Settings

rl.settings.collocation.nfe = 60
rl.settings.parameter_estimator.solver = 'ipopt_sens'
# Run KIPET

rl.run_opt()

# Display the results
rl.results.show_parameters
rl.plot()

If the user is interested in analyzing the confidence intervals associated with each estimated parameter, the same pro-
cedure as shown previously is used. You simply need to use sIPOPT:

rl.settings.parameter_estimator.solver = 'ipopt_sens'

This can also be done using the new package developed by David M. Thierry called k_aug, which computes the reduced
hessian instead of sIpopt. In order to use this instead of sIpopt, when calling the solver, the solver needs to be set to be
‘k_aug’. All other steps are the same as in previous examples.

rl.settings.parameter_estimator.solver = 'k_aug'

The covariance matrix of the parameters can then be displayed:

rl.results.parameter_covariance

Fig. 1.18: Concentration profile results using concentration data (concentration input)

In Ex_7_binary_reaction.py the same problem is solved. The only difference is that measurements occur before the
reaction begins. Although this may not be realistic, its purpose is to show how parameter fitting can be performed
when the exact time the reaction starts is unknown. This is done use approximated binary decision variables that are
still continuous variables. Thus, no integer decisions neede to be made.

You can very easily include such decision variables using the step method of the ReactionModel class. This method
takes several arguments including the variable name, the time where the step changes, whether this time is fixed, and
whether the step is turning on or off (going to one or to zero). If fixed is False, then the time argument is used as the
initial value.

# Use step functions to turn on the reactions
bl = rl.step('bl', time=2, fixed=False, switch='on')

# If desired, you can use different times for each reaction
# b2 = rl.step(b2', time=2.1, fixed=True, switch='on")

(continues on next page)
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rA = b1*(kl*A)
rB = b1*(k2*B)

Fig. 1.19: Concentration profile with unknown reaction start (binary_reaction)

Fig. 1.20: Profile of step function used to model the reaction start (binary reaction)

1.5.8 Variance and Parameter Estimation with Time-Dependent Inputs

Coming soon

1.5.9 Interfering Species and Fixed Absorbances

This tutorial is under construction! Check back shortly.

1.5.10 Parameter Estimability Analysis

Files
Ex_8_estimability.py
Ex_9_estimability_with_problem_gen.py
The Estimability Analyzer module is used for all algorithms and tools pertaining to estimability. Thus far, estimability

analysis tools are only provided for cases where concentration data is available. The methods rely on k_aug to obtain
sensitivities, so will only work if k_aug is installed and added to path.

import kipet
rl = kipet.ReactionModel ('reaction-1")

# Add the model parameters

k1l = rl.parameter('kl’', bounds=(0.1,2))
k2 = rl.parameter('k2', bounds=(0.0,2))
k3 = rl.parameter('k3', bounds=(0.0,2))
k4 = rl.parameter('k4', bounds=(0.0,2))

# Declare the components and give the initial values
A = rl.component('A"', value=0.3)

B = rl.component('B', value=0.0)

C = rl.component('C', value=0.0)

D = rl.component('D', value=0.01)

E = rl.component('E', value=0.0)

filename = 'data/new_estim_problem_conc.csv'

rl.add_data('C_frame', file=filename)

(continues on next page)
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rl.add_ode('A', -k1*A - k4*A )
rl.add_ode('B', k1*A - k2*B - k3*B )
rl.add_ode('C', k2*B k4*C )
rl.add_ode('D', k4*A - k3*D )
rl.add_ode('E', k3*B )

rl.set_times(0, 20)

param_uncertainties = {'k1':0.09,'k2':0.01,'k3"':0.02, 'k4"':0.5}

# sigmas, as before, represent the variances in regard to component

sigmas = {'A':1e-10,'B':1e-10,'C':1e-11, 'D':1le-11,'E':1le-11, 'device':3e-9}
# measurement scaling

meas_uncertainty = 0.05

params_fit, params_fix = rl.analyze_parameters(method="'yao',
parameter_uncertainties=param_uncertainties,
meas_uncertainty=meas_uncertainty,
sigmas=sigmas)

The algorithm for parameter ranking requires the definition by the user of the confidences in the parameter initial
guesses, as well as measurement device error in order to scale the sensitivities obtained. In order to run the full
optimization problem, the variances for the model are also still required, as in previous examples.

param_uncertainties = {'k1':0.09,'k2':0.01,'k3"':0.02,'k4"':0.5}
sigmas = {'A':1e-10,'B':1e-10,'C':1e-11, 'D':le-11,'E':1le-11, 'device':3e-9}
meas_uncertainty = 0.05

The parameter ranking algorithm from Yao, et al. (2003) needs to be applied first in order to supply a list of parameters
that are ranked. This algorithm ranks parameters using a sensitivity matrix computed from the model at the initial
parameter values (in the middle of the bounds automatically, or at the initial guess provided the user explicitly). This
function is only applicable to the case where you are providing concentration data, and returns a list of parameters
ranked from most estimable to least estimable. Once these scalings are defined we can call the ranking function:

This function returns the parameters in order from most estimable to least estimable. Finally we can use these ranked
parameters to perform the estimability analysis methodology suggested by Wu, et al. (2011) which uses an algorithm
where a set of simplified models are compared to the full model and the model which provides the smallest mean
squared error is chosen as the optimal number of parameters to estimate. This is done using:

This will return a list with only the estimable parameters returned. All remaining parameters (non-estimable) should
be fixed at their most likely values.

For a larger example with more parameters and which includes the data generation, noising of data, as well as the
application of the estimability to a final parameter estimation problem see this example.
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1.5.11 Using Wavelength Selection Tools

Files Ex_10_estimation_lof_correlation_subset_selection.py

In this example we are assuming that we have certain wavelengths that do not contribute much to the model, rather
increasing the noise and decreasing the goodness of the fit of the model to the data. We can set up the problem in the
same way as in Example 2 and solve the full variance and parameter estimation problem with all wavelengths selected.

import kipet
rl = kipet.ReactionModel('reaction-1")

# Add the model parameters
k1l = rl.parameter('kl’', value=2, bounds=(0.0, 5.0))
k2 = rl.parameter('k2, value=0.2, bounds=(0.0, 2.0))

Declare the components and give the initial values
= rl.component('A', value=1)

= rl.component('B', value=0.0)

rl.component('C', value=0.0)

N W > H%

# Use this function to replace the old filename set-up
rl.add_data('D_frame', category='spectral', file='data/Dij.txt")

# Define explicit system of ODEs
rA = rl.add_reaction('rA', k1*A)
rB = rl.add_reaction('rB', k2*B)

# Add the ODEs to the model
rl.add_ode('A', -rA)
rl.add_ode('B', rA - rB)
rl.add_ode('C', rB)

# Place a bound on the species' absorption profiles (if known)
rl.bound_profile(var='S"', bounds=(0, 200))

# Settings

rl.settings.collocation.ncp = 3

rl.settings.collocation.